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Impact of spatially correlated noise on neuronal firing
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We explore the impact of spatially correlated noise on neuronal firing when uncoupled Hodgkin-Huxley
model neurons are subjected to a common subthreshold signal. Noise can play a positive role in optimizing
neuronal behavior. Although the output signal-to-noise ratio decreases with enhanced noise correlation, both
the degree of synchronization among neurons and the spike timing precision are improved. This suggests that
there can exist precisely synchronized firings in the presence of correlated noise and that the nervous system
can exploit temporal patterns of neural activity to convey more information than just using rate codes. The
mechanisms underlying these noise-induced effects are also discussed in detail.
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I. INTRODUCTION

Cortical spike trains with high interspike interval~ISI!
variability have been observed in a wide range of stimul
evoked activity of pyramidal neurons@1#. Moreover, the neu-
ral responses to repeated presentations of the same stim
often vary largely from trial to trial@2#. An issue thus arises
concerning how the nervous system can precisely pro
information. One often assumes that the response variab
represents ‘‘neural noise’’ and that the averaged respo
over some populations of neurons may suppress the inhe
noise and enhance the extracted information about the st
lus. But such a hypothesis is based on the condition that
response variation in each neuron is more or less inde
dent of that in its neighbors@2,3#. However, it has been dem
onstrated that neural populations can exhibit significant
variance both in their spontaneous and stimulus-evo
activity @4,5#.

It has been suggested that, in the presence of correla
in response variation, one possible function for neurons
carry redundant message may be to improve the temp
resolution in coding a rapidly changing variable@6#. That is,
temporal correlations are crucial for signal processing as
of the information is encoded in the temporal structure
activity patterns. Furthermore, the synchronized activities
neurons with high temporal precision can be transmit
more efficiently than the asynchronous ones@7#. It has also
been argued@8# that cortical neurons might act more as c
incidence detectors preferentially relaying synchronized
tivity, than as temporal integrators effectively summating
coming synaptic inputs. However, how the synchronizat
and coincidence-detection mechanisms work in as noisy
environment as a cortical circuit remains elusive.

It is well known that cortical neurons are subjected
large numbers of random synaptic inputs and other end
enous noise. As a first approximation, we can model th
together as Gaussian noise. But as mentioned above, co
neurons display coherence in their firing activity, and th
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the correlation in input noise must be taken into account
has recently been shown that noise can play a construc
role in weak signal detection, such as improving the out
signal-to-noise ratio~SNR!, in the context of stochastic reso
nance~SR! @9#. While we have previously discussed the im
pact of spatially correlated noise on the output SNR@10#,
here we mainly explore its influence on neuronal synchro
zation and spike timing precision, as well as their biologic
relevance.

Motivated by the aforementioned considerations, we c
struct a network composed of uncoupled neurons which
subjected to a common subthreshold~local field potential!
signal s(t) plus spatially correlated noiseh(t). The neural
behavior depends remarkably on both noise intensityD and
the measureR of noise correlation. On the one hand, th
output SNR, the population coherence measure, and
spike timing precision all go through a maximum as a fun
tion of D. On the other hand, the SNR monotonically d
creases with increasingR, whereas both the degree of sy
chronization among the neurons and the spike tim
precision are improved. This makes it possible for neu
networks to exploit precise spatiotemporal firing patterns
encode the stimulus. The mechanisms underlying th
noise-induced effects are also discussed in detail. This p
is organized as follows. The model is described in Sec.
while the results and discussion are presented in Sec.
Finally, a conclusion is given in Sec. IV.

II. MODEL

We consider a summing network composed of Hodgk
Huxley ~HH! model neurons which are connected in para
and converge to a summing centerS, as shown in Fig. 1.
The dynamic equations for the network are presented as
lows @11#:

Cm

dVi

dt
52gNa

mi
3hi~Vi2ENa

!2gKni
4~Vi2EK!

2gl~Vi2El !1I 01s~ t !1h i~ t !, ~1!

dmi

dt
5am~Vi !~12mi !2bm~Vi !mi , ~2!
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dhi

dt
5ah~Vi !~12hi !2bh~Vi !hi , ~3!

dni

dt
5an~Vi !~12ni !2bn~Vi !ni , i 51, . . . ,N. ~4!

Here Cm51 mF/cm2, ENa
550 mV, EK5277 mV, El

5254.4 mV, gNa
5120 mS/cm2, gK536 mS/cm2, gl

50.3 mS/cm2, and am(V)50.1(V140)/(12e2(V140)/10),
bm(V)54e2(V165)/18, ah(V)50.07e2(V165)/20, bh(V)51/
(11e2(V135)/10), an(V)50.01(V155)/(12e2(V155)/10),
andbn(V)50.125e2(V165)/80. All the currents are in units o
mA/cm2.

I 0 is a constant bias and taken as 1mA/cm2. s(t) is a
subthreshold signal,A cos(2pfst), corresponding to the inpu
generated by the local field potential. The signal frequenc
set to f s550 Hz unless specified otherwise, and the sig
amplitude isA51 mA/cm2. Similar to that in Refs.@10,12#,
the noise term is assumed to beh i(t)5A12R« i(t)
1ARx(t) with

^« i~ t !&50, ^« i~ t1!« j~ t2!&52Dd i j d~ t12t2!, ~5!

and

^x~ t !&50, ^x~ t1!x~ t2!&5Dle2lut12t2u. ~6!

Here^ & represents the ensemble average andD is referred to
as noise intensity.« i(t) is the independent Gaussian whi
noise, whilex(t) is the Gaussian colored noise with the co
relation timel21 being 2 ms. Since

^h i~ t1!h j~ t2!&52D~12R!d i j d~ t12t2!1RDle2lut12t2u,
~7!

FIG. 1. A schematic diagram of the network composed of H
neurons. The total noise is divided into two items: the comm
noiseARx(t) and the independent noiseA12R« i(t).
01190
is
l

the control parameterR (0<R<1) measures the noise co
relation between a pair of neurons. In the above assump
we can consider that« i(t) represents the internal noise
while x(t) reflects the random synaptic input from neuro
beyond the system under study. This is plausible when
model cortical neurons in the same column. It has be
stressed in Ref.@5# that common input, common stimulu
selectivity, and common noise are tightly linked in functio
ing cortical circuits.

The output of the network is defined as

I out~ t !5
1

N (
i 51

N

u„Vi~ t !2V* …. ~8!

V* is the firing threshold taken as220 mV, andu(x)51 if
x>0 andu(x)50 if x,0. Thus the summer (S) operates
by averaging the output spike train of each unit to obtain
resultant output for the entire system. The number of neur
in the network is set toN5500 unless specified otherwise
The output SNR is defined as 10 log10(S/B) with S and B
representing the signal peak and the mean amplitude of
noise at the input signal frequency in the power spectrum
I out(t), respectively. Numerical integration is performed by
second-order stochastic algorithm@13#, and the time step is
500/32 768 ms. An average over 50 different realizations
taken to obtain reported results.

III. RESULTS AND DISCUSSION

First, we investigate the influence of spatially correlat
noise on neuronal firing. ForR51, since all the neurons ar
subjected to an identical input, they discharge at the sa
time but the firings exhibit skipping as seen in Fig. 2~a!. That
is, I out(t) is composed of irregular sequences of ones a
zeros. In contrast, for the case of independent noiseR
50), while one neuron is responding poorly to the sign
without spiking, others may be responding well. As a res
I out(t) varies nearly periodically at the same frequency
the signal though its peak values are small. For 0,R,1,
however,I out(t) exhibits apparent fluctuations between d
ferent driving cycles; that is,I out(t) is nearly zero in some
driving cycles, whereas it takes a relatively high value
others. Such fluctuations become more remarkable with
creasingR. This means that more neurons tend to fire sim
taneously as the correlation in input noise is enhanced
other words, the neurons exhibit synchronous firing b
meanwhile the ISIs are more variable. It is noted th
ARx(t) has a dominant impact on neuronal firing compar
to A12R« i(t) whenR.0.5.

Figure 2~b! depicts the output SNR against noise intens
D for different values ofR. Each curve presents a typica
characteristic of the SR, namely, the SNR goes throug
maximum with increasingD. The optimal noise intensity
slightly shifts rightward asR increases. Note that at eac
noise level the SNR is rigorously a decreasing function ofR.
This is clearly shown in Fig. 2~c!. In fact, in the case of
independent input noise, population averaging can eff
tively suppress the inherent noise, and thus the output si
contains more information about the stimulus. In contrast

n
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IMPACT OF SPATIALLY CORRELATED NOISE ON . . . PHYSICAL REVIEW E69, 011909 ~2004!
the case of spatially correlated noise, the averaged activi
nearly as noisy and variable as that of individual neuro
Thus the SNR decreases evidently compared to that foR
50. These imply that, in terms of the SNR, improving t
correlation in input noise instead diminishes the benefi
effect of population averaging as reported in Ref.@10#. It has
also been demonstrated that positive noise correlation
creases the estimation capacity of the network in the ligh
a Fisher information measure@14#.

Moreover, pooling more neurons has a minor influence
improving the SNR in the presence of noise correlation@see
Fig. 2~d!#. ForR50, the SNR first increases apparently wi
the ensemble sizeN and is saturated at largeN (.1000). But
provided there is little correlation in the noise, the SNR ris
slightly or nearly remains constant with increasingN. Thus it
seems unlikely to enhance the performance of the avera
activity by pooling more neurons in the light of the SNR
Nevertheless, this also indicates that the neurons exh
strong synchronization when subjected to correlated n
input.

FIG. 2. ~a! I out(t) vs time~with D51) and~b! the output SNR
vs noise intensity forR50.0, 0.3, 0.7, and 1.0, respectively.~c! The
output SNR vs the measureR of noise correlation forD50.1, 1,
and 10, respectively.~d! The output SNR vs the network size fo
R50.0, 0.01, 0.05, and 0.1, respectively, withD51.
01190
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The most common way to characterize the ISI variabil
is via the coefficient of variation (Cv) of interspike intervals,
which is defined as the ratio of the standard deviation to
mean of ISI. Figure 3~a! depictsCv against noise intensity
for different values ofR. For eachR, Cv is a monotonically
decreasing function ofD ~for D>0.5). This is in agreemen
with the results shown in Ref.@15# ~cf. Fig. 4 therein!. It is
noted thatCv is an increasing function ofR as seen in Fig.
3~b!. This means that the spike sequences become more
able with increasing the correlation in input noise.

It is noted that the above conclusions also hold for vario
signal frequencies. Figure 4~a! depicts the SNR againstR for
different values off s . The SNR always declines monoton
cally with R. But the neurons display different firing cohe
ence with the signal. As a result, the SNR takes a relativ
large value for 30< f s<100 Hz @see Fig. 4~b!#. That is, the
neurons are more sensitive to the signals with frequen
ranging from 30 to 100 Hz. Such frequency sensitivity h
also been reported in Ref.@16# and results from the reso
nance effect between the subthreshold oscillation of me
brane potential and the periodic signal. Resonance impro
the ability of neurons to respond selectively to inputs at p
ferred frequencies. As a matter of fact, the resonance
frequency preference may be one of the basic principles
derlying cognitive and behavioral processes.

To quantify the synchronization between neurons, we
a coherence measure based on the normalized cross co
tions of their spike trains at zero time lag@17#. To be specific,
supposing that a long time intervalT is divided into small
bins of t and that two spike trains are given byXi( l )50 or

FIG. 3. ~a! Cv vs noise intensityD for R50.0, 0.3, 0.5, and 1.0,
respectively.~b! Cv vs R for D50.5, 1, and 10, respectively.
9-3
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1 andXj ( l )50 or 1, with l 51,2, . . . ,m ~hereT/m5t). The
coherence measure for the pair is then defined as

Ki j ~t!5

(
l 51

m

Xi~ l !Xj~ l !

A(
l 51

m

Xi~ l !(
l 51

m

Xj~ l !

. ~9!

The population coherence measureK is obtained by averag
ing Ki j over all pairs of the neurons in the network. Heret is
taken as 2 ms.

Figure 5~a! plots K versus noise intensityD. K goes
through a maximum as a function ofD, namely, there also
exists an optimal noise level for the neuronal synchroni
tion. Furthermore, this optimal noise intensity is nearly ide
tical to that for the SNR shown in Fig. 2~b!. Note thatK is
higher in the case ofR50.7. In fact, K is an increasing
function of R as seen in Fig. 5~b!. Therefore, the level of
synchronization among the neurons is indeed improved
increasing the noise correlation.

We have discussed the neural firing under different c
ditions of input noise and found that the spatially correla
noise enhances the degree of synchronized firing. Now
examine in detail the impact of noise correlation on sp
timing. Figure 5~c! plots poststimulus time histogram
~PSTHs!, which characterize the number of spikes collec
at the summer per millisecond@11#. It is in essence equiva
lent to I out(t) showing how the neurons fire synchronous
over time. Obviously, there are many peaks located aro

FIG. 4. D51. ~a! The output SNR vsR for the signals with
f s520, 70, and 120 Hz, respectively.~b! The output SNR vs the
signal frequency forR50.0, 0.3, 0.7, and 1.0, respectively.
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the maxima of the signal, indicating a phase locking to
stimulus. In the case of independent noise, the peaks in e
cycle are nearly of the same short height, meaning that
neurons show weak synchronization. When the noise co
lation is enhanced, the degree of synchronization among
neurons is evidently improved as the PSTH takes a la
value in some driving cycles but a much smaller one in o
ers. AsR further increases, those high peaks prominently r
while the fluctuations become more remarkable. These
sults are in agreement with those shown in Fig. 2~a!.

As mentioned above, in temporal coding the precise t
ing of spikes is used to encode a stimulus. Thus the relia
ity and precision of firing patterns is a dominant factor d
termining the quality of a temporal code. Based on the sh
of a smoothed data set taken from a five-point moving av
age of the PSTH, the spike timing precision is defined
@18#

Pi5Hi /wi , ~10!

whereHi is the height of thei th peak in the smoothed PSTH
and wi is the width atHi /e. The mean precisionP is ob-
tained by an average over 200 driving cycles. Clearly,P
quantitatively characterizes the average number of sp
and their coincidence in any firing event in the PSTH.

FIG. 5. ~a! The population coherenceK vs noise intensity for
R50.0, 0.3, and 0.7, respectively.~b! K vs R with D51. ~c! The
input signals(t) and PSTHs forR50.0, 0.3, and 0.7, respectively
with D51.
9-4
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Figure 6~a! showsP versus noise intensityD for various
values ofR. Each curve displays a SR-like behavior. That
there exists an optimal noise level which maximizes the t
ing precision via the SR mechanism. This indicates that
spike timing precision in response to subthreshold perio
stimuli can be enhanced by input noise, as reported in R
@18#. The optimal noise intensity also slightly shifts righ
ward with increasingR. Moreover, for eachR the maximum
SNR, K, and P occur at the same noise intensity. The
verify that noise can play a positive role in weak signal p
cessing. The timing precision also monotonically increa
with R @see Fig. 6~b!#, which means that the correlated noi
does make the spike timing more precise. It is noted thaP
increases more steeply whenR.0.5 since ARx(t), the
dominant part of the noise, makes the neurons prone to
synchronously. The inset of Fig. 6~b! depictsP against the
signal frequency forD51. Clearly,P takes a relatively large
value for 50< f s<90 Hz. This indicates that the neuron
transmit these signals with a high precision and respond p
erentially to them.

FIG. 6. ~a! The spike timing precisionP vs noise intensity for
R50.0, 0.3, and 0.7, respectively.~b! P vs R for D50.5 and 1.0,
respectively. The inset isP vs the signal frequencyf s for R50.0
and 0.3, respectively, withD51. ~c! P vs the network size forR
50.0, 0.3, and 0.7, respectively, withD51.
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It is worth noting that the timing precision linearly in
creases with the number of neurons and that the slope
with increasingR, which is clearly seen in Fig. 6~c!. This is
largely different from the dependence of the output SNR
N shown in Fig. 2~d!. Here we see that pooling more neuro
is of functional significance in effectively firing postsynapt
neurons, and this effect is more prominent in the case
correlated noise.

It is of interest to investigate the mechanism underlyi
these noise-induced effects. We first discuss the bifurca
in the HH neuron to a constant biasI 0 in the absence of noise
(D50) and input signal (A50). As seen in Fig. 7~a!, for
I 0,I c56.2 there is only a globally stable fixed point. Th
birth of stable and unstable limit cycles occurs atI c due to
the saddle-node bifurcation. ForI c,I 0,I h59.8, there exist
a stable fixed point, a stable limit cycle, and an unstable li
cycle. The unstable limit cycle constitutes the bounda
separating the attractive basins corresponding to the fi

FIG. 7. ~a! Deterministic bifurcation diagram of a HH neuro
under dc current input. HereI 0 is the bifurcation parameter andV is
the membrane potential. The thick and dashed lines represent s
and unstable fixed points, respectively. The filled and open cir
represent both maxima and minima of stable and unstable l
cycles, respectively. Noise-induced bifurcation diagram forR50
~b! and R51 ~c!. The curves represent the upper (d) and lower
(3) bounds of the stationary distribution of membrane potential
each noise intensityD.
9-5
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point and limit cycle. When the initial conditionV0 falls
inside this boundary, i.e., in the contraction region, the
namics of system will be attracted to the point attractor. IfV0

is outside the boundary, i.e., in the expansion region,
system will be attracted to the stable limit cycle. As we sh
see, this feature has a large impact on neuronal synchron
tion. At I 05I h the Hopf bifurcation occurs and there is on
a stable limit cycle thereafter.

In the presence of noise, the neurons can be evoke
discharge spikes, and there exists a noise-induced trans
in excitability with increasingD @19#. To quantify such a
transition, we compute stochastic bifurcation diagram in
same way as in Refs.@19,20#. Figures 7~b! and 7~c! show the
noise-evoked transition diagrams forR50 and R51, re-
spectively, providing a global view of how the stationa
distributionV99 of membrane potential changes withD. For
each fixedD, output membrane potential has been collec
for 100 s. Then the top and bottom limits of the distributi
are computed in the way so that 99% of the distribution
below the upper line and 99% is above the lower one. Th
regions can be distinguished. ForR50, the distribution in-
creases linearly for low noise (D<0.5). As noise intensity
increases (0.5,D<2), the distribution evidently widens
That is, a transition occurs aroundD50.5. WhenD is fur-
ther increased, the distribution changes slightly. ForR51,
however, the bifurcation point is shifted rightwards and t
second region also broadens. Tanabeet al. @19# demonstrated
that noise with intensities prior to the bifurcation point m
play an important role in enhancing spike timing precisio
Here we further show that the correlation of noise wide
this beneficial region, which can largely enhance the n
ronal synchronization and lead to high variability of the sp
ing dynamics.

Comparing Figs. 2~b!, 5~a! and 6~a! with Figs. 7~b! and
7~c!, we see that the SNR,K, and P are in step with the
distribution of membrane potential varying withD. Thus we
can interpret their dependence onD and R in terms of the
excitability of neurons. In the first regime, noise-induc
fluctuations improve the excitability of some units in th
ensemble, while their membrane potentials are loca
around the resting potential. In the presence of input sig
those neurons which are more excitable than at rest may
synchronously in some driving cycles. As noise is increa
within this range, more neurons evolve closer to the fir
threshold, and enhanced response is observed such as th
of the SNR andP. As the noise is further increased beyo
the first regime, the membrane potential fluctuations e
dently increase. A fraction of neurons that are evoked to
by noise alone may not respond to the input due to the
fractory period, while other neurons whose membrane po
tials are around the resting potential may be triggered to
simultaneously by the signal. This may reduce the ove
response of the ensemble. In the third regime with lar
noise intensity, the noise fluctuations become dominant,
the neural coherence further decreases. Here the boun
between attractive basins, which is related to the unsta
limit cycle, plays a crucial role in the noise-induced synch
nization, as reported in Ref.@21# wherein a saddle point em
bedded in system dynamics is responsible for the no
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evoked synchronization. It is worth noting that in the case
correlated noise, the first region evidently expands, and
gives rise to a prominent increment inP andK with increas-
ing D.

Therefore, the correlated noise has two primary effects
neuronal firing. The first is related to noise intensity. In t
absence of input signal, small noise disturbs the long-te
motion of the system and results in the dominance of c
traction dynamics. The membrane potential is distributed
narrow region. In this case, the noise can trigger the neur
to respond synchronously to a weak signal, leading to
higher spike timing precision when noise intensity is i
creased up to the transition point. For large noise intens
the membrane potential distribution is largely broadened
this case, when the weak signal is input to the system, no
induced firings become dominant while the effect of the s
nal on driving the ensemble in phase has been distur
heavily. This leads to a decrease of spike timing precis
with increasingD.

The second effect of noise is due to its correlation. Fo
fixed noise intensity, neurons with independent noise can
spikes more independently, whereas correlation in no
makes the neurons prone to act together, which increase
inertia of ensemble neurons to be rest or to fire synch
nously. That is, the correlation drives neurons with differe
initial conditions to converge to an identical response, be
inside the contraction or expansion region. This results in
enhanced neural synchronization. Periodic signal play
similar synergic role to correlation in driving the neural d
namics in phase, improving the level of synchronizati
among neurons.

Finally, it is worth noting that the correlation of noise n
only enhances spike timing precision@see Fig. 6~a!#, but also
enlarges the spiking variability@see Fig. 3~b!#. The increment
in ISI variability will improve the encoding capacity of neu
rons. This is of functional significance when consideri
how the nervous system tunes noise intensity to its opti
values. Our results may give a reasonable mechanism
why neural responses in the cerebral cortex often beco
highly variable but precise in encoding input signals@1#.

IV. CONCLUSION

We have demonstrated that there exists precisely sync
nized activity in the presence of strong noise correlation. O
results reproduce some of the typical firing characteris
observed in cortical neurons. First, it is generally agreed
the response variability originates in unreliable synaptic
puts @22#. We also showed that the spike sequences bec
more variable in response to correlated noise. Second, la
scale synchronized firings have been observed in a variet
brain areas, especially theg oscillations~at frequencies of
30–70 Hz! @23#, which play functional roles such as patte
segmentation and feature binding. The frequency sensiti
shown in Figs. 4 and 6~b! may give us an enlightenment wh
the g oscillations are so ubiquitous in the nervous syste
Third, it has been found that under some conditions the sp
timing can show a high precision and reproducibility wi
the temporal resolution being 2–3 ms@24#. Thus precise
9-6
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IMPACT OF SPATIALLY CORRELATED NOISE ON . . . PHYSICAL REVIEW E69, 011909 ~2004!
temporal firing patterns can be exploited to encode the sti
lus.

As shown in Fig. 2~a!, although the neurons exhibit syn
chronized firings whenR50.7, they miss firing in many
driving cycles. But this does not necessarily mean that
neurons are poorly processing information. In contrast, s
synchronized activity may subserve information process
For example,s(t) may just represent a modulation of neur
behavior providing the system with an effect of frequen
selection@16#, and the neurons may preferentially respond
synchronized synaptic inputs. Alternatively, the neural n
works can exploit precise temporal relations among neur
to select responses for joint processing and to bind neu
temporally into functionally coherent assemblies@7#. Fur-
thermore, the combination of synchronized firing of cortic
neurons and high temporal precision also makes it poss
for their downstream neurons to act as coincidence detec
preferentially transferring synchronized activity@8#. For in-
stance, a coincidence-detection neuron can precisely d
mine whether two coupled neurons receive similar level
sensory input@25#.

Although we did not directly model the random synap
input, our results suggest that the noise correlation is cru
for cortical neurons to temporally process information a
that the cerebral cortex may convey more information
temporal codes than exclusively using rate codes. In cont
it seems plausible to assume that sensory neurons in the
ripheral nervous system are subject to more or less inde
dent noise. In that case, it is the averaging of neural
sponses that encodes a stimulus feature such as the s
frequency.

In addition, it is noted that Rudolph and Destexhe inv
u-
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tigated the case wherein a neuron is subjected to a peri
weak signal plus large numbers of random synaptic inp
@26#. They reported that neuronal response can also be
hanced by the correlation among synaptic inputs, exhibit
a SR-like behavior. Their results suggested that cortical n
rons are efficient in detecting such correlations within mi
second time scales. This is consistent with the present w
that neurons may exploit correlated noise to encode
transmit information.

In conclusion, in this paper we have explored the imp
of spatially correlated noise on neuronal firing. Noise c
play a constructive role in optimizing neuronal response
subthreshold stimuli. The results illustrate how the prese
of correlated noise improves the degree of synchroniza
among the neurons and the spike timing precision but me
while makes output spikes more variable. With a high timi
resolution, temporal structures of neural activity can be u
to convey more information. Thus correlated firings of ne
rons play functional roles in signal processing. These res
are consistent with observations in cortical neurons and
ply that we should consider the correlation in noise or s
aptic input when we model the cortical dynamics. Finally, w
would like to point out that the present form of noise is
simplification, and it is of interest to exploit more comple
configurations, such as the spatially decaying functions o
the population.
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