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Impact of spatially correlated noise on neuronal firing
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We explore the impact of spatially correlated noise on neuronal firing when uncoupled Hodgkin-Huxley
model neurons are subjected to a common subthreshold signal. Noise can play a positive role in optimizing
neuronal behavior. Although the output signal-to-noise ratio decreases with enhanced noise correlation, both
the degree of synchronization among neurons and the spike timing precision are improved. This suggests that
there can exist precisely synchronized firings in the presence of correlated noise and that the nervous system
can exploit temporal patterns of neural activity to convey more information than just using rate codes. The
mechanisms underlying these noise-induced effects are also discussed in detail.
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[. INTRODUCTION the correlation in input noise must be taken into account. It
has recently been shown that noise can play a constructive
Cortical spike trains with high interspike intervélSl)  role in weak signal detection, such as improving the output
variability have been observed in a wide range of stimulusSignal-to-noise ratigSNR), in the context of stochastic reso-
evoked activity of pyramidal neurofig]. Moreover, the neu- Nance&SR) [9]. While we have previously discussed the im-

ral responses to repeated presentations of the same stimulf@Ct Of spatially correlated noise on the output SNRJ,
) X . ; here we mainly explore its influence on neuronal synchroni-
often vary largely from trial to tria[2]. An issue thus arises

. ) zation and spike timing precision, as well as their biological
concerning how the nervous system can precisely procesgieyance

information. One often assumes that the response variability \jotivated by the aforementioned considerations, we con-
represents “neural noise” and that the averaged responsgruct a network composed of uncoupled neurons which are
over some populations of neurons may suppress the inherestibjected to a common subthreshdldcal field potential
noise and enhance the extracted information about the stimgignal s(t) plus spatially correlated noisg(t). The neural

lus. But such a hypothesis is based on the condition that thisehavior depends remarkably on both noise interi3ignd
response variation in each neuron is more or less indepeithe measureR of noise correlation. On the one hand, the
dent of that in its neighborf®,3]. However, it has been dem- output SNR, the population coherence measure, and the
onstrated that neural populations can exhibit significant cospike timing precision all go through a maximum as a func-
variance both in their spontaneous and stimulus-evoketlon of D. On the other hand, the SNR monotonically de-
activity [4,5]. creases with increasing, whereas both the degree of syn-

It has been suggested that, in the presence of correlatiachronization among the neurons and the spike timing
in response variation, one possible function for neurons t@recision are improved. This makes it possible for neural
carry redundant message may be to improve the temporaletworks to exploit precise spatiotemporal firing patterns to
resolution in coding a rapidly changing varialpd. That is, encode the stimulus. The mechanisms underlying these
temporal correlations are crucial for signal processing as paroise-induced effects are also discussed in detail. This paper
of the information is encoded in the temporal structure ofis organized as follows. The model is described in Sec. I,
activity patterns. Furthermore, the synchronized activities ofvhile the results and discussion are presented in Sec. lIl.
neurons with high temporal precision can be transmitted=inally, a conclusion is given in Sec. IV.
more efficiently than the asynchronous ofi@k It has also
been argued8] that cortical neurons might act more as co- Il. MODEL

incidence detectors preferentially relaying synchronized ac- We consider a summing network composed of Hodgkin-

t|V|ty_, than as tgm_poral integrators effectively summat[ng .'n'HuxIey (HH) model neurons which are connected in parallel
coming synaptic inputs. However, how the synchronization

and coincidence-detection mechanisms work in as nois aand converge o a summing centey as shown in Fig. 1.
: X oo : . Y 8he dynamic equations for the network are presented as fol-
environment as a cortical circuit remains elusive.

It is well known that cortical neurons are subjected toIOWS [11)
large numbers of random synaptic inputs and other endog- dv, 5 .
enous noise. As a first approximation, we can model these  Cm—gr = ~9n,MNi(Vi—En ) = 9k (Vi—Ex)
together as Gaussian noise. But as mentioned above, cortical
neurons display coherence in their firing activity, and thus —0i(V;—E)) +1g+s(t)+ »i(1), (D)
M V(1 v 2
*Corresponding author. Email address: fliu@nju.edu.cn F_am( ) (1=m0) = BV, )
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the control parametdR (0<R<1) measures the noise cor-
relation between a pair of neurons. In the above assumption,
we can consider that;(t) represents the internal noise,
while x(t) reflects the random synaptic input from neurons
beyond the system under study. This is plausible when we
model cortical neurons in the same column. It has been
stressed in Ref[5] that common input, common stimulus
selectivity, and common noise are tightly linked in function-
ing cortical circuits.

The output of the network is defined as

N
1ov(t) = % 2, 6Vi(H) = V"), ®

=
V* is the firing threshold taken as20 mV, andd(x)=1 if
x=0 and #(x)=0 if x<0. Thus the summerX) operates
by averaging the output spike train of each unit to obtain a
resultant output for the entire system. The number of neurons
in the network is set ttN=500 unless specified otherwise.
The output SNR is defined as 10 lgfS5/B) with S and B

FIG. 1. A schematic diagram of the network composed of HHrepresenting the signal peak and the mean amplitude of the
neurons. The total noise is divided into two items: the commonnoise at the input signal frequency in the power spectrum for

noise VRx(t) and the independent noisél — Re;(t).

dh;

E:ah(vi)(l_hi)_ﬁh(vi)hi: )
dn, .
_:an(vi)(l_ni)_ﬁn(vi)niv |:1,...,N. (4)

dt

Here C,=1 pFlen?, Ey =50 mV, Ex=-77mV, E
=—54.4mV, gy =120 mS/cd, gx=36 mS/cr, g
=0.3 mS/cm, and a,,(V)=0.1(V+40)/(1—e (VF40/10
Brm(V)=4e VFEIIE g (V) =0.07~ (VTN B (v)=1/
(1+e (V3919 (V)=0.01(V+55)/(1—e (V5919
andB,(V)=0.12%"(V*69/80 A|| the currents are in units of
wAlcm?.

lo is a constant bias and taken asuB/cm?. s(t) is a

1°U(t), respectively. Numerical integration is performed by a
second-order stochastic algoritiit3], and the time step is
500/32 768 ms. An average over 50 different realizations is
taken to obtain reported results.

Ill. RESULTS AND DISCUSSION

First, we investigate the influence of spatially correlated
noise on neuronal firing. F&R=1, since all the neurons are
subjected to an identical input, they discharge at the same
time but the firings exhibit skipping as seen in Figp)2 That
is, 1°U(t) is composed of irregular sequences of ones and
zeros. In contrast, for the case of independent noRe (
=0), while one neuron is responding poorly to the signal
without spiking, others may be responding well. As a result,
1°U(t) varies nearly periodically at the same frequency as
the signal though its peak values are small. FerR<1,

subthreshold signak cos(2rfd), corresponding to the input however,_l‘_’”t(t) exhibits appa;zetznt fluctuations between dif-
generated by the local field potential. The signal frequency ierent driving cycles; that id,°"(t) is nearly zero in some
set tofs=50 Hz unless specified otherwise, and the signaffiving cycles, whereas it takes a relatively high value in

amplitude isA=1 wA/cm?. Similar to that in Refs[10,17,
the noise term is assumed to bg(t)=1—Reg(t)
+Rx(t) with

(8i(1)=0, (&i(ty)ej(tz))=2Dg;8(t1—tz), (5

and
(x(1))=0, (x(ty)x(ty))=Dre Nutal, 6)

Here( ) represents the ensemble average @rsl referred to

others. Such fluctuations become more remarkable with in-
creasingR. This means that more neurons tend to fire simul-
taneously as the correlation in input noise is enhanced. In
other words, the neurons exhibit synchronous firing but
meanwhile the ISIs are more variable. It is noted that
JRx(t) has a dominant impact on neuronal firing compared
to V1—Re;(t) whenR>0.5.
Figure 2b) depicts the output SNR against noise intensity

D for different values ofR. Each curve presents a typical
characteristic of the SR, namely, the SNR goes through a
maximum with increasingd. The optimal noise intensity

as noise intensitys;(t) is the independent Gaussian white slightly shifts rightward asRk increases. Note that at each
noise, whiley(t) is the Gaussian colored noise with the cor- noise level the SNR is rigorously a decreasing functioR.of

relation time\ ~! being 2 ms. Since

(m(ty) 7j(t))=2D(1—R) & 8(t; —t,) + RDre Mt
7

This is clearly shown in Fig. @). In fact, in the case of

independent input noise, population averaging can effec-
tively suppress the inherent noise, and thus the output signal
contains more information about the stimulus. In contrast, in
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A ' ' ' o ' The most common way to characterize the 1SI variability
£l 500 1000 is via the coefficient of variationG,) of interspike intervals,
The Number N of Neurons which is defined as the ratio of the standard deviation to the

) ) mean of ISI. Figure @& depictsC, against noise intensity
FIG. 2. (a) 1°(t) vs time(with D=1) and(b) the output SNR {5 gifferent values oR. For eachR, C, is a monotonically
vs noise intensity foR=0.0, 0.3,0.7, and 1.0, respectively) The o craasing function db (for D=0.5). This is in agreement
output SNR vs t_he measufe of noise correlation fO'DZO'l.’ L With the results shown in Ref15] (cf. Fig. 4 therein. It is
and 10, respectivelyd) The output SNR vs the network size for . . . . A
R=0.0, 0.01, 0.05, and 0.1, respectively, with-1. noted thatCU is an increasing function dR as seen in Fig. _
3(b). This means that the spike sequences become more vari-
able with increasing the correlation in input noise.
the case of spatially correlated noise, the averaged activity is It is noted that the above conclusions also hold for various
nearly as noisy and variable as that of individual neuronssignal frequencies. Figurgd depicts the SNR again& for
Thus the SNR decreases evidently compared to thaRfor different values off;. The SNR always declines monotoni-
=0. These imply that, in terms of the SNR, improving the cally with R. But the neurons display different firing coher-
correlation in input noise instead diminishes the beneficiabence with the signal. As a result, the SNR takes a relatively
effect of population averaging as reported in R&f)]. It has  large value for 3&f,<100 Hz[see Fig. 4b)]. That is, the
also been demonstrated that positive noise correlation dereurons are more sensitive to the signals with frequencies
creases the estimation capacity of the network in the light ofanging from 30 to 100 Hz. Such frequency sensitivity has
a Fisher information measufé4]. also been reported in Refl6] and results from the reso-
Moreover, pooling more neurons has a minor influence omance effect between the subthreshold oscillation of mem-
improving the SNR in the presence of noise correlafeege  brane potential and the periodic signal. Resonance improves
Fig. 2(d)]. ForR=0, the SNR first increases apparently with the ability of neurons to respond selectively to inputs at pre-
the ensemble sizZ¥ and is saturated at largé&(>1000). But  ferred frequencies. As a matter of fact, the resonance and
provided there is little correlation in the noise, the SNR risedrequency preference may be one of the basic principles un-
slightly or nearly remains constant with increasMgrhus it derlying cognitive and behavioral processes.
seems unlikely to enhance the performance of the averaged To quantify the synchronization between neurons, we use
activity by pooling more neurons in the light of the SNR. a coherence measure based on the normalized cross correla-
Nevertheless, this also indicates that the neurons exhibttons of their spike trains at zero time 1847]. To be specific,
strong synchronization when subjected to correlated noisseupposing that a long time intervdlis divided into small
input. bins of 7 and that two spike trains are given By(l)=0 or
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Kij(7)= = = : (9 the maxima of the signal, indicating a phase locking to the
stimulus. In the case of independent noise, the peaks in each

241 Xi(l)ztl Xj(h cycle are nearly of the same short height, meaning that the
neurons show weak synchronization. When the noise corre-
lation is enhanced, the degree of synchronization among the
neurons is evidently improved as the PSTH takes a large

taken as 2 ms. value in some driving cycles but a much smaller one in oth-
Figure Fa) plots K versus noise intensityD. K goes ©rs. AsRfurther increases, those high peaks prominently rise
through a maximum as a function &, namely, there also While the fluctuations become more remarkable. These re-

exists an optimal noise level for the neuronal synchronizaSults are in agreement with those shown in Fig)2
tion. Furthermore, this optimal noise intensity is nearly iden- AS mentioned above, in temporal coding the precise tim-
tical to that for the SNR shown in Fig(®. Note thatk is  Ing of spikes is used to encode a stimulus. Thus the reliabil-
higher in the case oR=0.7. In fact,K is an increasing %Y and precision of firing patterns is a dominant factor de-
function of R as seen in Fig. ®). Therefore, the level of termining the quality of a temporal code. Based on the shape

synchronization among the neurons is indeed improved b@f @ smoothed data set taken from a five-point moving aver-
increasing the noise correlation. age of the PSTH, the spike timing precision is defined as
We have discussed the neural firing under different cont18]
ditions of input noise and found that the spatially correlated
noise enhances the degree of synchronized firing. Now we
examine in detail the impact of noise correlation on spike
timing. Figure %c) plots poststimulus time histograms whereH; is the height of theth peak in the smoothed PSTH,
(PSTHS, which characterize the number of spikes collectedand w; is the width atH;/e. The mean precisiol® is ob-
at the summer per millisecoridl]. It is in essence equiva- tained by an average over 200 driving cycles. Cleafly,
lent to 1°U%(t) showing how the neurons fire synchronously quantitatively characterizes the average number of spikes
over time. Obviously, there are many peaks located aroundnd their coincidence in any firing event in the PSTH.

The population coherence measirés obtained by averag-
ing Kj; over all pairs of the neurons in the network. Heris

Pi:Hi/Wi, (10)
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Figure 8a) showsP versus noise intensit for various  each noise intensitp.

values ofR. Each curve displays a SR-like behavior. That is,
there exists an optimal noise level which maximizes the tim- It is worth noting that the timing precision linearly in-
ing precision via the SR mechanism. This indicates that thereases with the number of neurons and that the slope rises
spike timing precision in response to subthreshold periodiavith increasingR, which is clearly seen in Fig.(6). This is
stimuli can be enhanced by input noise, as reported in Refargely different from the dependence of the output SNR on
[18]. The optimal noise intensity also slightly shifts right- N shown in Fig. 2d). Here we see that pooling more neurons
ward with increasindR. Moreover, for eachr the maximum s of functional significance in effectively firing postsynaptic
SNR, K, and P occur at the same noise intensity. Theseneurons, and this effect is more prominent in the case of
verify that noise can play a positive role in weak signal pro-correlated noise.
cessing. The timing precision also monotonically increases It is of interest to investigate the mechanism underlying
with R [see Fig. @b)], which means that the correlated noise these noise-induced effects. We first discuss the bifurcation
does make the spike timing more precise. It is noted Ehat in the HH neuron to a constant biggin the absence of noise
increases more steeply wheR>0.5 since VRy(t), the (D=0) and input signal 4=0). As seen in Fig. &), for
dominant part of the noise, makes the neurons prone to firg,<I.=6.2 there is only a globally stable fixed point. The
synchronously. The inset of Fig(l® depictsP against the birth of stable and unstable limit cycles occursl adue to
signal frequency fob =1. Clearly,P takes a relatively large the saddle-node bifurcation. Foy<<l,<1,=9.8, there exist
value for 56=f,<90 Hz. This indicates that the neurons a stable fixed point, a stable limit cycle, and an unstable limit
transmit these signals with a high precision and respond pretycle. The unstable limit cycle constitutes the boundary
erentially to them. separating the attractive basins corresponding to the fixed
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point and limit cycle. When the initial conditioW, falls  evoked synchronization. It is worth noting that in the case of
inside this boundary, i.e., in the contraction region, the dy-correlated noise, the first region evidently expands, and this
namics of system will be attracted to the point attractov/f ~ gives rise to a prominent incrementfhandK with increas-
is outside the boundary, i.e., in the expansion region, théng D.
system will be attracted to the stable limit cycle. As we shall  Therefore, the correlated noise has two primary effects on
see, this feature has a large impact on neuronal synchronizgeuronal firing. The first is related to noise intensity. In the
tion. At 1,=1,, the Hopf bifurcation occurs and there is only absence of input signal, small noise disturbs the long-term
a stable limit cycle thereafter. motion of the system and results in the dominance of con-
In the presence of noise, the neurons can be evoked %action dynamiCS. The membrane potential is distributed in a
discharge spikes, and there exists a noise-induced transitidifow region. In this case, the noise can trigger the neurons
in excitability with increasingD [19]. To quantify such a t0 respond synchronously to a weak signal, leading to a
transition, we compute stochastic bifurcation diagram in thehigher spike timing precision when noise intensity is in-
same way as in Reff19,20. Figures Tb) and 7c) show the ~ creased up to the transition point. For large noise intensity,
noise-evoked transition diagrams f&=0 andR=1, re- the membrane potential distribution is largely broadened. In
spectively, providing a global view of how the stationary this case, when the weak signal is input to the system, noise-
distribution V4o of membrane potential changes with For ~ induced firings become dominant while the effect of the sig-
each fixedD, output membrane potential has been collected’@ on driving the ensemble in phase has been disturbed
for 100 s. Then the top and bottom limits of the distribution h€avily. This leads to a decrease of spike timing precision
are computed in the way so that 99% of the distribution isWith increasingD. o _ _
below the upper line and 99% is above the lower one. Three 1he second effect of noise is due to its correlation. For a
regions can be distinguished. FRr=0, the distribution in- fixed noise intensity, neurons with independent noise can fire
creases linearly for low noiseX(<0.5). As noise intensity SPikes more independently, whereas correlation in noise
increases (08D<2), the distribution evidently widens. _makgs the neurons prone to act together, wh|ch.|ncreases the
That is, a transition occurs aroutizi=0.5. WhenD is fur- inertia of ensemble neurons to be rest or to fire synchro-
ther increased, the distribution changes slightly. Rer1, nously. That is, the correlation drives neurons with different

however, the bifurcation point is shifted rightwards and thelMtial conditions to converge to an identical response, being
second region also broadens. Tanabal.[19] demonstrated inside the contraction or expansion region. This results in an
that noise with intensities prior to the bifurcation point may €nhanced neural synchronization. Periodic signal plays a
play an important role in enhancing spike timing precision.Similar synergic role to correlation in driving the neural dy-
Here we further show that the correlation of noise widend?@Mics in phase, improving the level of synchronization
this beneficial region, which can largely enhance the neu@MOng neurons. _ _ _
ronal synchronization and lead to high variability of the spik- _Finally, itis worth noting that the correlation of noise not
ing dynamics. only enhances spike timing precisifsee Fig. €a)], but also
Comparing Figs. @), 5(@ and Ga) with Figs. 4b) and _enlarges .the“sDIklng.varlablln[\see Fig. B_b)]. The increment
7(c), we see that the SNRS, and P are in step with the " ISI variability will improve the encoding capacity of neu-
distribution of membrane potential varying with Thus we ~ ONS- This is of functional S|gn|f|(?an9e Whgn co'nsidering
can interpret their dependence Brnand R in terms of the oW the nervous system tunes noise intensity to its optimal
excitability of neurons. In the first regime, noise-inducedV@/ues. Our results may give a reasonable mechanism for
fluctuations improve the excitability of some units in the Why neural responses in the cerebral cortex often become
ensemble, while their membrane potentials are locatedignly variable but precise in encoding input signil

around the resting potential. In the presence of input signal,

those neurons \_/vhich are more excitable thaq at rest may fire IV. CONCLUSION

synchronously in some driving cycles. As noise is increased

within this range, more neurons evolve closer to the firing We have demonstrated that there exists precisely synchro-
threshold, and enhanced response is observed such as the rigged activity in the presence of strong noise correlation. Our
of the SNR andP. As the noise is further increased beyondresults reproduce some of the typical firing characteristics
the first regime, the membrane potential fluctuations evi-observed in cortical neurons. First, it is generally agreed that
dently increase. A fraction of neurons that are evoked to firéhe response variability originates in unreliable synaptic in-
by noise alone may not respond to the input due to the reputs[22]. We also showed that the spike sequences become
fractory period, while other neurons whose membrane potermore variable in response to correlated noise. Second, large-
tials are around the resting potential may be triggered to firscale synchronized firings have been observed in a variety of
simultaneously by the signal. This may reduce the overalbrain areas, especially the oscillations(at frequencies of
response of the ensemble. In the third regime with largeB0—70 Hz [23], which play functional roles such as pattern
noise intensity, the noise fluctuations become dominant, ansegmentation and feature binding. The frequency sensitivity
the neural coherence further decreases. Here the boundasiiown in Figs. 4 and(6) may give us an enlightenment why
between attractive basins, which is related to the unstablthe v oscillations are so ubiquitous in the nervous system.
limit cycle, plays a crucial role in the noise-induced synchro-Third, it has been found that under some conditions the spike
nization, as reported in Ref21] wherein a saddle point em- timing can show a high precision and reproducibility with
bedded in system dynamics is responsible for the noisethe temporal resolution being 2—3 np&4]. Thus precise
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temporal firing patterns can be exploited to encode the stimuigated the case wherein a neuron is subjected to a periodic
lus. weak signal plus large numbers of random synaptic inputs
As shown in Fig. 2a), although the neurons exhibit syn- [26]. They reported that neuronal response can also be en-
chronized firings wherR=0.7, they miss firing in many hanced by the correlation among synaptic inputs, exhibiting
driving cycles. But this does not necessarily mean that the@ SR-like behavior. Their results suggested that cortical neu-
neurons are poorly processing information. In contrast, suchons are efficient in detecting such correlations within milli-
synchronized activity may subserve information processingsecond time scales. This is consistent with the present work
For examples(t) may just represent a modulation of neural that neurons may exploit correlated noise to encode and
behavior providing the system with an effect of frequencytransmit information.
selection16], and the neurons may preferentially respond to In conclusion, in this paper we have explored the impact
synchronized synaptic inputs. Alternatively, the neural net-of spatially correlated noise on neuronal firing. Noise can
works can exploit precise temporal relations among neuronplay a constructive role in optimizing neuronal response to
to select responses for joint processing and to bind neurorsubthreshold stimuli. The results illustrate how the presence
temporally into functionally coherent assembligq. Fur-  of correlated noise improves the degree of synchronization
thermore, the combination of synchronized firing of corticalamong the neurons and the spike timing precision but mean-
neurons and high temporal precision also makes it possiblehile makes output spikes more variable. With a high timing
for their downstream neurons to act as coincidence detectorssolution, temporal structures of neural activity can be used
preferentially transferring synchronized activ(§]. For in-  to convey more information. Thus correlated firings of neu-
stance, a coincidence-detection neuron can precisely detewens play functional roles in signal processing. These results
mine whether two coupled neurons receive similar level ofare consistent with observations in cortical neurons and im-
sensory inpuf25]. ply that we should consider the correlation in noise or syn-
Although we did not directly model the random synaptic aptic input when we model the cortical dynamics. Finally, we
input, our results suggest that the noise correlation is cruciabould like to point out that the present form of noise is a
for cortical neurons to temporally process information andsimplification, and it is of interest to exploit more complex
that the cerebral cortex may convey more information viaconfigurations, such as the spatially decaying functions over
temporal codes than exclusively using rate codes. In contradhe population.
it seems plausible to assume that sensory neurons in the pe-
ripheral nervous system are subject to more or less indepen- ACKNOWLEDGMENTS
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